VAST MM: Multimedia Browser for Presentation Video

Alexander Haubold and John R. Kender
Department of Computer Science
Columbia University, New York
{ahaubold,jrk}@cs.columbia.edu

Presented by: Apostol (Paul) Natsev
IBM T.J. Watson Research Center
Overview

• Introduction
 – Motivation
 – Background
 – Challenges
 – Objectives

• Indexing
 – Visual Segmentation
 – Speaker Segmentation
 – Text Index

• User Interface

• Evaluation

• Conclusion / Future Work
Overview

- Introduction
 - Motivation
 - Background
 - Challenges
 - Objectives

- Indexing
 - Visual Segmentation
 - Speaker Segmentation
 - Text Index

- User Interface

- Evaluation

- Conclusion / Future Work
Introduction

• Classroom video typically lecture recordings
 – Some editing
 – Semi-professional environment
 – Semi-professional / experienced “actor” (instructor)

• New focus: student presentations and other classroom video material
 – Shift in “actor” from instructor to student
 – Different environment
 – Different use by instructors and students
 – Different challenges for analysis, browsing, and dissemination
Introduction: Motivation

- Classroom video beyond lectures are important resource
- Presentation video focus on students
 - Self evaluation: presentation style, fluency, etc.
 - Team evaluation: team dynamics
 - Peer evaluation: compare to / learn from others
 - Important for engineering education
 - ABET (Accreditation Board for Engineering and Technology)
 - Instruction on professional skills, e.g. presentation, communication
- Archive
 - Long-term progress (student- and course-specific)
Introduction: Background

• Presentation video:
 – Student(s) present work to class
 – Setting: low-tech classroom
 • No special recording considerations

• Our particular case:
 – Course: Introduction to Engineering Design
 – >160 students / semester, 4 course sections
 – Teams of 4-6, ~32 teams / semester
 – Midterm, final presentations, ~16 hours of video
 – Recordings on DV tape, multiple presentations / tape
 – Collection over 5 years: >150 hours of video
Introduction: Challenges

- Classroom-specific problems:
 - Poor lighting
 - Commotion due to lack of “stage”
 - Varying audio quality
 - Amateur camera operator (intentional)
 - No editing (too expensive, no merit)

In-class presentation with Q&A
Introduction: Objectives

• Video browser for classroom material
 – Easy accessibility (WWW)
 – Integrated (video, visual browsing cues, search)
 – Interactive UI elements
 → Java app. with platform-independent video player

• Automatic, inexpensive indexing of content
 – Manual indexing burdensome
 – Material does not merit manual effort
 – But: long videos require content browsing cues

• Some search functionality
 – Reasonable cues from speech
Overview

• Introduction
 – Motivation
 – Background
 – Challenges
 – Objectives

• Indexing
 – Visual Segmentation
 – Speaker Segmentation
 – Text Index

• User Interface
• Evaluation
• Conclusion / Future Work
Indexing: Visual Segmentation

• Objectives
 – Determine scenes of visual similarity
 – Condense visual information for browser

• Problem
 – Unedited video, thus no scene cuts

• Approach
 – Detect two types of predominant visual change events
Indexing: Visual Segmentation

1. Abrupt change:
 - E.g., electronic slide change
 - Pixel intensity difference between consecutive frames

2. Gradual change:
 - E.g., person walking in/out, camera pan/zoom
 - Histogram change between distant frames (4 secs)

 Combination of the two:
 - Measure of degree of change (not binary)
 → Customizable parameter in UI
Indexing: Speaker Segmentation

• Objectives
 – Determine audio scene changes
 – Provide visual index of speakers

• Approach
 – Speaker Segmentation
 • Use well-accepted Bayesian Information Criterion with MFCC features; high accuracy
 – Visual Speaker Index
 • Extract face regions from video segments
Indexing: Speaker Segmentation

- Speaker Index
 - In lieu of face recognition
 - Manual extraction in this iteration for experiments
 - Are speaker indices useful?
 - User study on various types of face representations
Indexing: Text Index

- **Objective**
 - Provide keywords / phrases as content index
 - Use ASR (IBM ViaVoice) for automatic transcription

- **Problem**
 - Many speakers (> 160 per semester)
 - Speaker models not available / too burdensome
Indexing: Text Index

• **Approach**
 – Filter “good” content using external corpus (presentation slides)
 • Determine descriptive phrases in slides with WordNet
 – Rank filtered words/phrases
 • Nouns more descriptive, thus rank higher
 • Longer phrases more descriptive, thus rank higher
 • No stop words
 • Phrases and rank visualized in UI
Overview

• Introduction
 – Motivation
 – Background
 – Challenges
 – Objectives

• Indexing
 – Visual Segmentation
 – Speaker Segmentation
 – Text Index

• User Interface

• Evaluation

• Conclusion / Future Work
User Interface

• Video Content Browser
 – Video scenes (dynamic visual change) indicated by thumbnails
 – Speaker scenes indicated by faces
 – Keywords/phrases ranked by descriptiveness and frequency of use
 – Streaming video (MPEG1)
 • Pure Java implementation (server/client) instead of JMF (JMF unreliable, platform-dependent, not readily available)
 • Cross-platform: Windows, MacOS, Linux, Solaris
 – Text Search over filtered text and raw transcripts
User Interface

• Adjustable parameter: Visual Granularity
 – Coarse granularity: more distinct visual changes
 – Decrease/increase number of thumbnails
User Interface

- Adjustable parameter: Zoom
 - Change level of detail for video summary
 - Decrease/increase amount of displayed information
User Interface

- Adjustable parameter: Text Context
 - Group temporally close words/phrases (x seconds)
 - Visually isolates themes
Overview

• Introduction
 – Motivation
 – Background
 – Challenges
 – Objectives

• Indexing
 – Visual Segmentation
 – Speaker Segmentation
 – Text Index

• User Interface

• Evaluation

• Conclusion / Future Work
Evaluation

• Generally not straightforward to measure
• Some quantitative results
 – End-of-semester user studies
 – Targeted tasks
 – 4 semesters (2 years), 598 students
 – Usage logs
• Some qualitative results
 – Surveys completed by students
 – Anecdotal responses from instructors
Evaluation

- Quantitative Setup
 - Students complete targeted tasks
 - Search for familiar content
 e.g., “Find your first appearance”
 - Search for unfamiliar content
 e.g., “Find presentation on topic XYZ”
 - Summarize presentations using keywords/phrases
 - 8 hours of video from on-going semester
 - 2 hours are familiar content (student’s course section)
 - 6 hours are unfamiliar (3 parallel course sections)
 - Measures
 - Completion rate: completed vs. skipped (~ frustration rate)
 - Duration of completion
 - Accuracy: distance of response to groundtruth (in seconds)
Evaluation

• Some quantitative results over 3 semesters (Continual improvement of indexing and user interface)
 – Reasonable and promising improvement

<table>
<thead>
<tr>
<th>All Tasks</th>
<th>Fall 2005</th>
<th>Spring 2006</th>
<th>Fall 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completion</td>
<td>81%</td>
<td>83%</td>
<td>92%</td>
</tr>
<tr>
<td>Average Duration</td>
<td>120.11 sec</td>
<td>126.66 sec</td>
<td>100.22 sec</td>
</tr>
</tbody>
</table>
Evaluation

• Finding unfamiliar content
 “Find presentation on subject XYZ”
 – Most difficult task, over 8 hours of video
 – Few hints of answer (if any) in visual cues
 – Interesting effect when text search available (*)
 • Text search isolates likely video(s)
 • If unable to locate answer within, blindly trust search result
 → Student selects correct video, but answer within is far off
 → Increase in rate of completion, decrease in avg. accuracy

<table>
<thead>
<tr>
<th>Finding unfamiliar content in 8 hours of video (most difficult task)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure</td>
</tr>
<tr>
<td>Completion</td>
</tr>
<tr>
<td>Average Duration</td>
</tr>
<tr>
<td>Accuracy</td>
</tr>
</tbody>
</table>
Evaluation

• Visual speaker index
 – Determine representation of faces for browsing
 – User task: find student given example of face
 – 4 representations (randomly assigned in user study)
 1. Head/Shoulder + Profile/Shoulder
 2. Head/Shoulder
 3. Head + Profile (tight crop)
 4. Head (tight crop)
Evaluation

• Visual speaker index (cont.)
 – Effectiveness varies significantly
 • Worst UI requires twice as much time for search as best UI
 – Best results from most information (perhaps intuitive)
 • Head and shoulder shot, front and profile
 – Remaining results not straightforward to interpret

<table>
<thead>
<tr>
<th>Completion</th>
<th>Duration</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>97%</td>
<td>86.72 sec</td>
<td>31</td>
</tr>
<tr>
<td>97%</td>
<td>126.12 sec</td>
<td>30</td>
</tr>
<tr>
<td>91%</td>
<td>137.12 sec</td>
<td>35</td>
</tr>
<tr>
<td>91%</td>
<td>155.94 sec</td>
<td>33</td>
</tr>
</tbody>
</table>
Evaluation

- Some qualitative results
 - Student perspective:
 - Great response to particular UI elements
 - Visual alignment of thumbnails/timeline to text
 - Face index (entertainment factor)
 - Adjustability of parameters
 - Ready availability of video material appreciated
 - Instructor perspective:
 - Benefit from ready availability
 - One-on-one student feedback with A/V material
 - Inclusion in course curriculum
 - Steady improvement in student presentation performance
 - Archive data prepares for first presentation (midterm)
 - Midterm data prepares for final presentation
Overview

- Introduction
 - Motivation
 - Background
 - Challenges
 - Objectives

- Indexing
 - Visual Segmentation
 - Speaker Segmentation
 - Text Index

- User Interface

- Evaluation

- Conclusion / Future Work
Conclusion / Future Work

- Pedagogic requirement for feedback material to improve presentation skills
- Tools must be transparent and inexpensive
- Solution viable, sustainable, and effective
- Areas of improvement:
 - Visual speaker index well-received: need automation
 - Search too simple; need approach for ranking results
 - Use of other approaches for search unexplored
 - What are appropriate semantic concepts for this media?
 - User annotations for better feedback communication
 - Other cues: detect speech flaws (interjections)?
Thank you!

Questions / Answers?

Please note: On-line demo with neutral videos in the works. We cannot disclose current database of videos - our students may get irritated (more than 1500 of them =~ civil warfare). Please contact author for more info on demo. Thanks!